

ENABLING SUSTAINABLE MATERIALS

INTRODUCTION

BIOSUCCINIUM® sustainable succinic acid is a 100% bio-based succinic acid that enables the production of polyester polyols and polyurethane products with lower environmental footprint. BIOSUCCINIUM® offers an alternative to traditional chemicals such as fossil-based succinic acid or adipic acid which are conventional raw materials. This document shows the properties of polyester polyols based on bio-based succinic acid with a wide variety of applications. The data has been generated based on actual (lab scale) production of these polyester polyols and is intended to showcase that (1) polyester polyols based on bio-based succinic acid can be manufactured and (2) lead to properties that are in the same range as conventional polyester polyols.

In those polyols where mixed diols or mixed diacids are used to synthesis co-polyesters, the mix ratios are expressed in % molar.

The renewable content is expressed as percentage renewable carbon content. In the formulations below, BIOSUCCINIUM®, 1,3-propanediol and sebacic acid are of renewable origin. Ethylene glycol, di-ethylene glycol, and 1,4 butanediol are of fossil origin.

Di-acid	Diol (molar ratio)	Renewable content [%w]	Functionality	Mn [g/mol]	Viscosity [mPa.s]	Acid / OH value [mg KOH/g]		Tm [°C]	Remarks
Adipic acid	BDO	0%	2	1943	800 (70°C)	0.75	57.0	58	
BIOSUCCINIUM®	BDO	50%	2	1918	Solid (75°C) 400 (125°C)	0.11	58.5	108	not soluble in THF
BIOSUCCINIUM®	BDO	50%	2	1623	Solid (75°C) 274 (125°C)	2.30	-	105	not soluble in THF; synthesis incomplete
BIOSUCCINIUM®	BDO	50%	2	1009	Solid (75°C)	1.01	110.2	102	not soluble in THF
Adipic acid	BDO+EG (50:50)	0%	2	2004	579 (75°C)	1.30	54.7	~17	
BIOSUCCINIUM®	BDO+EG (50:50)	57%	2	2004	1306 (75°C)	1.10	54.9	~55	

Table 2: Formulation and properties of 1,4 BDO vs 1,3 PDO based polyester polyols

Di-acid	Diol (molar ratio)	Renewable content [%w]	Functionality	Mn [g/mol]	Viscosity [mPa.s]	Acid / OH value [mg KOH/g]		Tm [°C]	Remarks
Adipic acid	BDO	0%	2	1943	800 (70°C) 136 (125°C)	0.75	57.0	58	
BIOSUCCINIUM®	BDO	50%	2	1918	Solid (75°C) 400 (125°C)	0.11	58.5	108	not soluble in THF
BIOSUCCINIUM®	PDO	100%	2	1955	2680 (70°C)	1.39	57.4	48	100% renewable

Table 3: Formulation and properties of mixed diol co-polyester polyols

Di-acid	Diol (molar ratio)	Renewable content [%w]	Functionality	Mn [g/mol]	Viscosity [mPa.s]	Acid / OH value [mg KOH/g]		Tm [°C]	Remarks
Adipic acid	BDO	0%	2	1943	800 (70°C)	0.75	57.0	58	
BIOSUCCINIUM®	BDO	50%	2	1918	Solid (75°C) 400 (125°C)	0.11	58.5	108	not soluble in THF
BIOSUCCINIUM®	BDO+EG (50:50)	57%	2	2048	3650 (70°C)	1.19	53.6	56	
BIOSUCCINIUM®	BDO+HDO (50:50)	44%	2	1995	2150 (70°C)	0.55	55.7	50	
BIOSUCCINIUM®	BDO+PDO (50:50)	53%	2	1985	2000 (70°C)	1.13	55.4	56	partly soluble in THF

Table 4: Formulation and properties of succinic acid and adipic acid based co-polyester polyols

Di-acid	Diol (molar ratio)	Renewable content [%w]	Functionality	Mn [g/mol]	Viscosity [mPa.s]		/ OH value g KOH/g]	Tm [°C]	Remarks
Adipic acid	BDO	0%	2	1943	800 (70°C)	0.75	57.0	58	
BIOSUCCINIUM®+ Adipic acid (20:80)	BDO	8%	2	1948	850 (70°C)	0.51	57.1	34	
BIOSUCCINIUM®+ Adipic acid (40:60)	BDO	17%	2	1901	1150 (70°C)	1.31	57.7	22	
BIOSUCCINIUM®+ Adipic acid (60:40)	BDO	27%	2	2078	1400 (70°C)	0.4	53.6	66	
BIOSUCCINIUM®+ Adipic acid (80:20)	BDO	38%	2	2057	Solid (70°C)	0.54	54.0	82	
BIOSUCCINIUM®	BDO	50%	2	1918	Solid (70°C) 400 (125°C)	0.11	58.5	108	not soluble in THF

Table 5: Formulation and properties of succinic acid and sebacic acid based co-polyester polyols

Di-acid	Diol (molar ratio)	Renewable content [%w]	Functionality	Mn [g/mol]	Viscosity [mPa.s]	Acid / OH value [mg KOH/g]		Tm [°C]	Remarks
Adipic acid	BDO	0%	2	1943	800 (70°C)	0.75	57.0	58	
Sebacic acid	BDO	71%	2	1967	1100 (70°C)	0.85	56.2	63	
BIOSUCCINIUM®+ Sebacic acid (50:50)	BDO	64%	2	1937	550 (70°C)	0.81	57.1	42	
BIOSUCCINIUM®+ Sebacic acid (67:33)	BDO	60%	2	1953	6500 (70°C)	0.65	56.8	83	
BIOSUCCINIUM®	BDO	50%	2	1918	Solid (75°C) 400 (125°C)	0.11	58.5	108	not soluble in THF

Table 6: Formulation and properties of EG/DEG co-polyester polyols for microcellular PU

Di-acid	Diol (molar ratio)	Renewable content [%w]	Functionality	Mn [g/mol]	Viscosity [mPa.s]	Acid / OH value [mg KOH/g]		Tm [°C]	Remarks
Adipic acid	EG+DEG (60:40)	0%	2	1945	502 (75°C)	1.1	56.6	-	microcellular PU
BIOSUCCINIUM®	EG+DEG (60:40)	59%	2	2059	1405 (75°C)	0.5	54	-	microcellular PU
BIOSUCCINIUM®+ Sebacic acid (85:15)	EG+DEG (60:40)	64%	2	1958	1292 (75°C)	0.3	57	-	microcellular PU

Table 7: Formulation and properties of polyols for foam, coatings or adhesives

Di-acid	Diol	Renewable content [%w]	Functionality	Mn [g/mol]	Viscosity [mPa.s]	Acid / OH value [mg KOH/g]		Tm [°C]	Remarks
BIOSUCCINIUM®	conventional	t.b.d	2-4	300- 500	4350 (25°C)	0.5	347	-	Rigid Foam
BIOSUCCINIUM®	conventional	t.b.d	2-4	300- 500	3300 (25°C)	0.5	238	-	Rigid Foam
BIOSUCCINIUM®	conventional	t.b.d	3-4	2000	4480 (60°C)	1.12	61.5	-	Coatings / Adhesives/ Flex Foam
BIOSUCCINIUM®	HDO	40%	2	2000	1000 (70°C)	0.93	57.2	57	Coatings / Adhesives

HOW TO ORDER BIOSUCCINIUM®

Production

BIOSUCCINIUM® is available in commercial quantities from the first large scale commercial production plant, located in Cassano, Italy. Samples for evaluation are available, as well. The biotechnology process to produce BIOSUCCINIUM® was developed by Reverdia, a joint venture between DSM and Roquette. Since Reverdia's dissolution in April 2019, Roquette now manufactures and sells BIOSUCCINIUM® under licence from DSM. Please contact Roquette at www.roquette.com for more information.

USDA CERTIFICATION

Roquette has earned the U.S. Department of Agriculture (USDA) Certified Biobased Product label. The product, BIOSUCCINIUM® succinic acid, is now able to display a unique USDA label that highlights its percentage of biobased content. It shows that BIOSUCCINIUM® contains 100% USDA certified biobased content.

^{*} Registered trademark(s) of Roquette Frères. The information contained in this document is to the best of our knowledge true and accurate but all instructions, recommendations or suggestions are made without any guarantee. Since the conditions of use are beyond our control, we disclaim any liability for loss and/or damage suffered from use of these data or suggestions. Furthermore, no liability is accepted if use of any product in accordance with these data or suggestions infringes any patent. No part of this document may be reproduced by any process without our prior written permission. For questions about a product's compliance with additional countries' standards not listed above, please contact your local Roquette representative.

www.roquette.com